A Classification of Simple W' Models

Tomohiro Abe

Institute for Advanced Research Nagoya University KMI, Nagoya U.

in collaboration with

Ryo Nagai (Nagoya U.)

based on arXiv:1607.03706

Life with Higgs

Higgs was discovered in 2012

- consistent with the SM prediction
- no significant deviations so far

Higgs is still mysterious

- hierarchy problem? $(v_{EW} << m_{Planck}?)$
- Yukawa interaction? (y_{up} << y_{top} ?)
- origin of the potential?
- elementary or composite?
- only one scalar?
- ...

Spin-I particle

Composite Higgs

- a solution of the hierarchy problem
- many other composite particles

Spin-1 new particles (V' = W', Z')

- composite particles
- easy to treat (extension of gauge symmetry)

Higgs boson unknown particles

unknown particles

V' also appears in different context

- extension of EW gauge symmetry (Left-Right symmetric model, ···)
- some kind of GUT models
- Extra-dimension (KK modes)
- ...

too many V' models ...

- Q. What is an efficient way to treat many models?
 - A. Use effective theory [Pappadopulo et.al (2014)]
 - three important parameters $(g_{V'ff}, g_{V'VV}, m_{V'})$
 - V' = SU(2)_L triplet vector field
- Q. If V' is discovered at the LHC, does effective theory satisfy us?
 - A. No, we need to find the model
- Q. But too many models Any efficient ways?
 - A. OK, classify V' setup.

What is the main decay mode of V'?

parametrize couplings

$$g_{V'ff} = -\xi_f g_{Vff},$$

$$g_{V'VV} = \xi_V \frac{m_V^2}{m_{V'}^2} g_{VVV}$$

ratio of Γ

$$\frac{\Gamma(V' \to ff)}{\Gamma(V' \to VV)} \simeq 4N_c \frac{\xi_f^2}{\xi_V^2}$$

main decay mode is determined by the relation between ξ_f and ξ_V

- For $\xi_f > \xi_v$ or $\xi_f \sim \xi_v$, V' mainly decay to fermions
- For $\xi_f < \xi_v$, V' mainly decay to bosons

perturbative unitarity helps us to find the relation between ξ_f and ξ_V without specifying any models

Perturbative unitarity

processes and amplitude

- ff \rightarrow VV, ff \rightarrow VV' ff \rightarrow V'V'
- $\vee\vee\to\vee\vee$, $\vee\vee\to\vee\vee'$, ...

- Amp \sim **a** E² + **b** E¹ + ...
- Amp \sim **c** E⁴ + **d** E² + ···

impose: a = b = c = d = 0

• example: a = 0 leads $g_{Vff}g_{V'ff} = g_{Vff}g_{V'VV} + g_{V'ff}g_{V'V'V}$,

Perturbative unitarity (cont')

 $VV \rightarrow VV$, $VV \rightarrow VV'$, $VV \rightarrow V'V'$ (Amp $\sim c E^4 + d E^2 + \cdots$)

h: SU(2) singlet, Δ : triplet, X: five-plet

example: d = 0 in $VV \rightarrow VV'$ leads

$$(3m_V^2 + m_{V'}^2)g_{V'VVV} - 3\sum_k m_k^2 g_{V_kVV} g_{V'V_kV} = \sum_h g_{VVh} g_{VV'h} - \frac{5}{6}\sum_X g_{VVX} g_{VV'X},$$

Perturbative unitarity (cont')

we find various coupling relations

- quadratic equations for the couplings
- two solutions for the relation ξ_f and ξ_V

$$g_{V'ff} = -\xi_f g_{Vff},$$

$$g_{V'VV} = \xi_V \frac{m_V^2}{m_{V'}^2} g_{VVV}$$

V' decay to fermion

In all scalars are SU(2) singlet case

$$\xi_{V} = \frac{\xi_{f}}{1 - \frac{m_{W}^{2}}{m_{W'}^{2}} (1 - \xi_{f}^{2})} \simeq \xi_{f} \qquad \frac{\Gamma(V' \to ff)}{\Gamma(V' \to VV)} \simeq 4N_{c}$$

$$\xi_{V} = -\frac{1}{\xi_{f}} \frac{1}{1 - \frac{m_{W}^{2}}{m_{W'}^{2}} (1 - \xi_{f}^{-2})} \simeq -\frac{1}{\xi_{f}} \qquad \frac{\Gamma(V' \to ff)}{\Gamma(V' \to VV)} \simeq 4N_{c}\xi_{f}^{4}$$

$$\frac{\Gamma(V' \to ff)}{\Gamma(V' \to VV)} \simeq 4N_c$$

$$\frac{\Gamma(V' \to ff)}{\Gamma(V' \to VV)} \simeq 4N_c \xi_f^4$$

$$\Gamma(V' \to VV)$$

V' decay to bosons (if $\xi_f < 1$)

ξ_v vs ξ_f (all scalars are SU(2) singlet)

two classes of V' models

We found two classes of models

- type-F: $\xi_V \sim \xi_f$, $\Gamma(V' \to ff)$ >> $\Gamma(V' \to VV)$
- type-B: $\xi_V \sim 1/\xi_f$, $\Gamma(V' \rightarrow ff) << \Gamma(V' \rightarrow VV)$

$$g_{V'ff} = -\xi_f g_{Vff},$$

$$g_{V'VV} = \xi_V \frac{m_V^2}{m_{V'}^2} g_{VVV}$$

This classification also valid in systems with triplet/five-plet scalars

This is model independent result, but

- specific models are suitable for the LHC pheno.
- next step is find benchmark models for each of types

type-F example: HVT model A

 $SU(2)_0 \times SU(2)_1 \times U(1)_2 \rightarrow U(1)_{QED}$

Barger - Keung - Ma (1980)	
Pappadopulo - Thamm - Torre - Wulzer (2014))

	SU(2)	SU(2)	U(1)
q	2	1	1/6
и	1	1	2/3
d	1	1	-1/3
l	2	1	-1/2
e	1	1	-1
Н	2	1	1/2
Н	2	2	0

$$H_1 = \begin{pmatrix} v_1 + h_1 + i\pi_1^0 & i\sqrt{2}\pi_1^+ \\ i\sqrt{2}\pi_1^- & v_1 + h_1 - i\pi_1^0 \end{pmatrix} \qquad H_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} i\sqrt{2}\pi_2^+ \\ v_2 + h_2 - i\pi_2^0 \end{pmatrix}$$

type-B example

TA - Kitano (2013)

$SU(2)_0 \times SU(2)_1$	$x U(1)_2 \rightarrow$	U(1) _{QED}
--------------------------	------------------------	---------------------

	SU(2)	SU(2)	U(1)
q	2	1	1/6
и	1	1	2/3
d	1	1	-1/3
l	2	1	-1/2
e	1	1	-1
Н	2	1	1/2
Н	2	2	0
Н	1	2	1/2

$$H_1 = \begin{pmatrix} v_1 + h_1 + i\pi_1^0 & i\sqrt{2}\pi_1^+ \\ i\sqrt{2}\pi_1^- & v_1 + h_1 - i\pi_1^0 \end{pmatrix} \qquad H_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} i\sqrt{2}\pi_2^+ \\ v_2 + h_2 - i\pi_2^0 \end{pmatrix} \qquad H_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} i\sqrt{2}\pi_3^+ \\ v_3 + h_3 - i\pi_3^0 \end{pmatrix}$$

$$H_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} i\sqrt{2}\pi_3^+ \\ v_3 + h_3 - i\pi_3^0 \end{pmatrix}$$

type-B

Note:

V'VV coupling $\sim V'\pi_{\vee}\pi_{\vee}$ coupling

type-F
Note:

assume $V' \sim SU(2)_1$ (this is true if $g_1 >> 1$)

V' coupling to πv is suppressed

V' coupling to πv is suppressed

V' directly couple to πv

 $g_{V'VV} << g_{V'VV}$

LHC bounds

Summary

- there are many models with spin-1 new particles (V')
 - ★ composite Higgs models
 - ★ extra-dimension models
 - **★** GUT
 - ★ …
- two types of V'
 - ★ type-F: V' → ff is main decay mode
 ★ type-B: V' → VV is main decay mode
- we showed the clear difference of the two types
- we showed benchmark models for each type