A Classification of Simple W' Models

Tomohiro Abe
Institute for Advanced Research Nagoya University KMI, Nagoya U.
in collaboration with
Ryo Nagai (Nagoya U.)
based on arXiv:1607.03706

Life with Higgs

Higgs was discovered in 2012

- consistent with the SM prediction
- no significant deviations so far

Higgs is still mysterious

- hierarchy problem? ($\mathrm{V}_{\mathrm{EW}} \ll$ m Planck ?)
- Yukawa interaction? ($\mathrm{y}_{\mathrm{up}} \ll \mathrm{Y}_{\text {top }}$?)
- origin of the potential?
- elementary or composite?
- only one scalar?
- ...

Spin-I particle

Composite Higgs

- a solution of the hierarchy problem
- many other composite particles

Higgs boson

unknown particles
unknown particles

Spin-1 new particles ($\mathbf{V}^{\prime}=W^{\prime}, Z^{\prime}$)

new particle

V' also appears in different context

- extension of EW gauge symmetry (Left-Right symmetric model, $\cdot \cdots$)
- some kind of GUT models
- Extra-dimension (KK modes)
- ...

too many V' models ...

Q. What is an efficient way to treat many models?
A. Use effective theory [Pappadopulo et.al (2014)]

- three important parameters ($\mathrm{g}_{\mathrm{v}^{\prime} f f}, \mathrm{~g}_{\mathrm{v}^{\prime} \mathrm{vv}}, \mathrm{m}_{\mathrm{v}^{\prime}}$)
- $\mathrm{V}^{\prime}=\mathrm{SU}(2) \mathrm{L}$ triplet vector field
Q. If V^{\prime} is discovered at the LHC, does effective theory satisfy us?
A. No, we need to find the model
Q. But too many models … Any efficient ways?
A. OK, classify V^{\prime} setup.

What is the main decay mode of V '?

parametrize couplings

$$
\begin{aligned}
g_{V^{\prime} f f} & =-\xi_{f} g_{V f f}, \\
g_{V^{\prime} V V} & =\xi_{V} \frac{m_{V}^{2}}{m_{V^{\prime}}^{2}} g_{V V V}
\end{aligned}
$$

ratio of Γ

$$
\frac{\Gamma\left(V^{\prime} \rightarrow f f\right)}{\Gamma\left(V^{\prime} \rightarrow V V\right)} \simeq 4 N_{c} \frac{\xi_{f}^{2}}{\xi_{V}^{2}}
$$

main decay mode is determined by the relation between $\boldsymbol{\xi}_{\mathrm{f}}$ and $\boldsymbol{\xi}_{\mathrm{V}}$

- For $\boldsymbol{\xi}_{\mathrm{f}}>\boldsymbol{\xi}_{\mathrm{v}}$ or $\boldsymbol{\xi}_{\mathrm{f}} \sim \boldsymbol{\xi}_{\mathrm{v}}, \mathrm{V}^{\prime}$ mainly decay to fermions
- For $\xi_{f}<\xi_{\mathrm{v}}$, $\quad \mathrm{V}^{\prime}$ mainly decay to bosons
perturbative unitarity helps us to find the relation between ξ_{f} and ξ_{v} without specifying any models

Perturbative unitarity

processes and amplitude

- $\mathrm{ff} \rightarrow \mathrm{VV}$, ff $\rightarrow \mathrm{VV}^{\prime}$ ff $\rightarrow \mathrm{V}^{\prime} \mathrm{V}^{\prime} \quad \mathrm{Amp} \sim \mathbf{a} \mathrm{E}^{2}+\mathbf{b} \mathrm{E}^{1}+\cdots$
- $\mathrm{VV} \rightarrow \mathrm{VV}, \mathrm{VV} \rightarrow \mathrm{VV}^{\prime}, \cdots \quad \mathrm{Amp} \sim \mathrm{c} \mathrm{E}^{4}+\mathbf{d} \mathrm{E}^{2}+\cdots$
impose : $\mathbf{a}=\mathbf{b}=\mathbf{c}=\mathbf{d}=\mathbf{0}$
- example: a $=0$ leads $g_{V f f} g_{V^{\prime} f f}=g_{V f f} g_{V^{\prime} V V}+g_{V^{\prime} f f} g_{V^{\prime} V^{\prime} V}$,

Perturbative unitarity (cont')

$\mathbf{V V} \rightarrow \mathbf{V V}, \mathbf{V V} \rightarrow \mathbf{V} \mathbf{V}^{\prime}, \mathbf{V V} \rightarrow \mathbf{V}^{\prime} \mathbf{V}^{\prime} \quad\left(A m p \sim \mathbf{c} E^{4}+\mathbf{d} E^{2}+\cdots\right)$

$h: \mathrm{SU}(2)$ singlet, Δ : triplet, X : five-plet
example: d = $\mathbf{0}$ in $\mathbf{V V} \rightarrow \mathbf{V V}$ leads

$$
\left(3 m_{V}^{2}+m_{V^{\prime}}^{2}\right) g_{V^{\prime} V V V}-3 \sum_{k} m_{k}^{2} g_{V_{k} V V} g_{V^{\prime} V_{k} V}=\sum_{h} g_{V V h} g_{V V^{\prime} h}-\frac{5}{6} \sum_{X} g_{V V X} g_{V V^{\prime} X},
$$

Perturbative unitarity (cont')

we find various coupling relations

- quadratic equations for the couplings
- two solutions for the relation $\boldsymbol{\xi}_{f}$ and $\boldsymbol{\xi}_{\boldsymbol{v}}$

$$
\begin{aligned}
& g_{V^{\prime} f f}=-\xi_{f} g_{V_{f f},}, \\
& g_{V^{\prime} V V}=\xi_{V} \frac{m_{V}^{2}}{m_{V^{\prime}}^{2}} g_{V V V}
\end{aligned}
$$

In all scalars are $\mathbf{S U (2)}$ singlet case
\mathbf{V}^{\prime} decay to fermion

$$
\begin{array}{ll}
\xi_{V}=\frac{\xi_{f}}{1-\frac{m^{2}}{m_{W^{\prime}}^{2}}\left(1-\xi_{f}^{2}\right)} \simeq \xi_{f} & \frac{\Gamma\left(V^{\prime} \rightarrow f f\right)}{\Gamma\left(V^{\prime} \rightarrow V V\right)} \simeq 4 N_{c} \\
\xi_{V}=-\frac{1}{\xi_{f}} \frac{1}{1-\frac{m_{2}^{2}}{m_{W^{\prime}}^{2}}\left(1-\xi_{f}^{-2}\right)} \simeq-\frac{1}{\xi_{f}} & \frac{\Gamma\left(V^{\prime} \rightarrow f f\right)}{\Gamma\left(V^{\prime} \rightarrow V V\right)} \simeq 4 N_{c} \xi_{f}^{4}
\end{array}
$$

ξ_{v} vs ξ_{f} (all scalars are $\mathbf{S U}(2)$ singlet)

$$
\xi_{V}=\frac{\xi_{f}}{1-\frac{m_{W}^{2}}{m_{W^{\prime}}^{2}}\left(1-\xi_{f}^{2}\right)} \simeq \xi_{f} \quad \quad \xi_{V}=-\frac{1}{\xi_{f}} \frac{1}{1-\frac{m_{W}^{2}}{m_{W^{\prime}}^{2}}\left(1-\xi_{f}^{-2}\right)} \simeq-\frac{1}{\xi_{f}}
$$

two classes of V' models

We found two classes of models

- type-F: $\xi_{\mathrm{V}} \sim \xi_{\mathrm{f}}, \Gamma\left(\mathrm{V}^{\prime} \rightarrow \mathrm{ff}\right) \gg \Gamma\left(\mathrm{V}^{\prime} \rightarrow \mathrm{VV}\right)$
- type-B: $\xi_{V} \sim 1 / \xi_{f}, \Gamma\left(V^{\prime} \rightarrow f f\right) \ll \Gamma\left(V^{\prime} \rightarrow V V\right)$
$g_{V^{\prime} f f}=-\xi_{f} g_{V f f}$,
$g_{V^{\prime} V V}=\xi_{V} \frac{m_{V}^{2}}{m_{V^{\prime}}^{2}} g_{V V V}$

This classification also valid in systems with triplet/five-plet scalars

This is model independent result, but

- specific models are suitable for the LHC pheno.
- next step is find benchmark models for each of types

type-F example : HVT model A

$\operatorname{SU}(2)_{0} \times \operatorname{SU}(2)_{1} \times U(1)_{2} \rightarrow U(1)_{Q E D}$

	$\mathrm{SU}(2)$	$\mathrm{SU}(2)$	$\mathrm{U}(1)$
q	2	1	$1 / 6$
u	1	1	$2 / 3$
d	1	1	$-1 / 3$
ℓ	2	1	$-1 / 2$
e	1	1	-1
H	2	1	$1 / 2$
H	2	2	0

$$
H_{1}=\left(\begin{array}{cc}
v_{1}+h_{1}+i \pi_{1}^{0} & i \sqrt{2} \pi_{1}^{+} \\
i \sqrt{2} \pi_{1}^{-} & v_{1}+h_{1}-i \pi_{1}^{0}
\end{array}\right)
$$

$$
H_{2}=\frac{1}{\sqrt{2}}\binom{i \sqrt{2} \pi_{2}^{+}}{v_{2}+h_{2}-i \pi_{2}^{0}}
$$

type-B example

TA - Kitano (2013)
$S U(2)_{0} \times S U(2)_{1} \times U(1)_{2} \rightarrow U(1)_{\text {QED }}$

	$\mathrm{SU}(2)$	$\mathrm{SU}(2)$	$\mathrm{U}(1)$
q	2	1	$1 / 6$
u	1	1	$2 / 3$
d	1	1	$-1 / 3$
ℓ	2	1	$-1 / 2$
e	1	1	-1
H	2	1	$1 / 2$
H	2	2	0
H	1	2	$1 / 2$

$$
H_{1}=\left(\begin{array}{cc}
v_{1}+h_{1}+i \pi_{1}^{0} & i \sqrt{2} \pi_{1}^{+} \\
i \sqrt{2} \pi_{1}^{-} & v_{1}+h_{1}-i \pi_{1}^{0}
\end{array}\right) \quad H_{2}=\frac{1}{\sqrt{2}}\binom{i \sqrt{2} \pi_{2}^{+}}{v_{2}+h_{2}-i \pi_{2}^{0}} \quad H_{3}=\frac{1}{\sqrt{2}}\binom{i \sqrt{2} \pi_{3}^{+}}{v_{3}+h_{3}-i \pi_{3}^{0}}
$$

what makes difference?

type-F

type-B
Note:
$V^{\prime} V V$ coupling $\sim V^{\prime} \pi \vee \pi \vee$ coupling

what makes difference?

type-F type-B

Note:

$V^{\prime} V V$ coupling $\sim V^{\prime} \pi \vee \pi_{V}$ coupling

assume $V^{\prime} \sim \operatorname{SU}(2)_{1}$
(this is true if $\mathrm{g}_{1} \gg 1$)

what makes difference?

```
type-F type-B
```


V' coupling to $\pi \mathrm{v}$ is suppressed

what makes difference?

type-F type-B

Note:
πv should be here $\quad V^{\prime} V V$ coupling $\sim V^{\prime} \pi \vee \pi v$ coupling
$\pi \mathrm{v}$ ' should be here
assume $V^{\prime} \sim \operatorname{SU}(2)_{1}$ (this is true if $\mathrm{g}_{1} \gg 1$)
πv ' are mixture of H_{1} and H_{2} $\pi \mathrm{v}$ are mixture of $\mathrm{H}_{1} \mathrm{H}_{2}$ and H_{3}

V' coupling to $\pi \mathrm{v}$ is suppressed
V' directly couple to $\pi \mathrm{v}$
$g_{V^{\prime} V V} \ll g_{V^{\prime} V V}$

LHC bounds

Summary

- there are many models with spin- 1 new particles (V^{\prime})
* composite Higgs models
* extra-dimension models
* GUT
^ \cdots
- two types of \mathbf{V}^{\prime}
\star type-F: $\mathrm{V}^{\prime} \rightarrow$ ff is main decay mode
\star type- $\mathrm{B}: \mathrm{V}^{\prime} \rightarrow \mathrm{VV}$ is main decay mode
- we showed the clear difference of the two types
- we showed benchmark models for each type

